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A digital method of evaluating interferograms was developed in order to extract the maximum amount of 
information from interferograms of complex-flow phenomena in shock tubes such as ionizing-gas shock 
structures and their induced laminar boundary layers as well as real-gas nonstationary oblique-shock- 
wave diffractions. The method is based on a new approach to the interpretation of interferograms. In this 
approach the spatial coordinates (x, y) of the various lines of interference (fringes) on the interferograrn 
are put into digital form, thereby readily making computer analysis possible. The new method is not only 
many times faster but it also removes most of the painstaking drudgery from evaluating interferograms 
and provides for greater accuracy and insight. 

NOTATION 

a entrance position to test section 
Ar argon atom 
A~ + argon ion 
b exit position from test section 
Co speed of light in vacuum 
e electron charge 
k arbitrary constant 
K Gladstone-Dale constant 
K A atomic Gladstone-Dale constant 
K~ ion Gladstone-Dale constant 
KM molecular Gladstone-Dale constant 
l geometrical length travelled by light 
L geometrical distance across test section 
m isopycnic number 
me electron mass 
M continuous fringe number 
M' integer fringe number 
Ms incident shock wave Mach number 
n index of refraction 
ne electron number density 
N continuous variable 
N' integer variable 
N2 nitrogen molecule 
P pressure 
S fringe shift 
t time 
T temperature 
x spatial coordinate 
X collision partner 
y spatial coordinate 
z spatial coordinate 
at degree of dissociation 
6 first variation of an integral 
Aft change in property fl 
e angle of rotation of second beam 

interferometer 
0w wedge angle 
2 light source wavelength 

splitter in 
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20 light source wavelength in vacuum 
p density 
r optical path length 
z* optical path length inside the test section 
~o light source frequency 
Ogp plasma frequency 
Z degree of ionization 

Subscripts 

E ionization equilibrium conditions 
p test section arm 
q compensation chamber arm 
r reference point 
0 'no-flow' conditions 

1 INTRODUCTION 

Optical techniques possess several distinct advantages 
for flow investigation. For practical purposes they are 
free from inertia lag; they do not require the introduc- 
tion of a disturbing mechanical probe into the flow field, 
and they record conditions throughout an extended area 
of the flow field rather than conditions at one point. Of 
the three techniques--shadowgraph, schlieren, and 
interferometry--all useful and complementary for 
gas-flow studies, interferometry is the most important 
for obtaining quantitative information about density 
fields. Interferograms of two-dimensional or 
rotationally-symmetric flows may be evaluated to obtain 
density variations throughout the entire field. For these 
reasons the interferometer has been used as a major ex- 
perimental instrument in studying different flow phen- 
omena such as subsonic, transonic, supersonic, and 
hypersonic flows, boundary layers, natural (free) convec- 
tion heat transfer, and other applications. 

At low and moderate temperatures, when dissociation 
and ionization are negligible, a relatively simple expres- 
sion relates the density p to the refractive index n (1), 

n - 1 = rp 0.1) 

whcre K is the Gladstone-Dale constant of the gas 
under consideration. Ifa mixturc ofgascs is investigated, 
eq. (I) becomes (2) 

n - 1 = Z K , p ,  (1.1a) 
i 

where p~ is the partial density of the/th species and K~ is 
the corresponding Gladstone-Dale constant. Con- 
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sequently, if a dissociated diatomic gas (e.g., N2 + X 
2N + X) is considered as a gas mixture of molecules 
(N2) and atoms (N) eq. (l . la) yields (2), 

n - 1 = p[KM(1 - ~) + KA~] (1.1b) 

where KM and K A a r e  the molecular and atomic 
Gladstone-Dale constants, respectively, and ~ is the 
degree of dissociation. For a singly-ionized gas (e.g., 
Ar + X ~- Ar ÷ + e + X) eq. (1.1a) results in (3) 

2 
n -- 1 = p[KA(1 -- Z) + K,Z] COP (1.1c) 

2co z 

where Ka and K~ are the Gladstone-Dale constants of 
the atom and the ion, respectively, X is the degree of 
ionization, co and cop are the light source and the plasma 
frequencies, respectively, given by (3) 

c o (4rcnee2t l /2  
co = 2rcv = 2rt 2-o' COp = \ me / 

Note from eq. (1.1c) that the contribution of the elec- 
trons to the index of refraction is opposite to that of the 
atoms or ions. Inserting the appropriate values into the 
above expression for co and cop finally results in, for a 
singly ionized plasma (3): 

n - 1 = p[KA(1 -- Z) + KIZ] - 4"46 x 10-422ne (1.1d) 

The Gladstone-Dale constant depends on the light- 
source wavelength and the nature of the gas, and to a 
large extent it is independent of the pressure of the gas. 

In most applications to gas dynamics one wants to 
know the density at a definite position in space. For this 
purpose it is normally required that the fringes be 
located at this point in order to obtain the appropriate 
interferogram needed for the evaluation (1). 

The Mach-Zehnder arrangement of the interfer- 
ometer which has the ability of locating fringes at any 
desired place by suitably rotating its mirrors and/or 
beam-splitters, is very suitable for this purpose. The 
Mach-Zehnder  interferometer was developed by Zehn- 
der (4) and Mach (5) in the early 1890s. It uses a beam- 
splitter and plane mirror to divide light from one source 
into two coherent and parallel beams. One of the coher- 
ent beams is passed through the gas flow being studied, 
while the other serves as a fixed reference arm. A second 
beamsplitter and mirror combination reunites the two 
coherent beams to produce interference fringes. For rela- 
tively large-scale technical applications in wind-tunnel 
or shock-tube studies, the Mach-Zehnder  arrangement 
has proved to be most practical. The fact that the flow 
under study is traversed only once by the test beam 
(unlike the Michelson arrangement) renders interpreta- 
tion of the interferograms relatively straightforward. 
Detailed reviews and discussions of the theoretical 
aspects involved with the Mach-Zehnder interferometer 
as well as its history and construction can be found in 
references (1), (6), (7), (8), and (16). 

The interferometer measures the refractive index; con- 
sequently it is possible to obtain its value at any point in 
a given interferogram (1). Thus in the case of a non- 
dissociating or non-ionizing gas eq. (1.1)can be used to 
determine the density. In the case of dissociating or ion- 
izing gases the refractive index is related additionally to 

the degree of dissociation or ionization (eqs. (1.1b) and 
(1.1c)). Therefore, two simultaneous interferograms with 
two different wavelengths are necessary in order to pro- 
vide an additional relation. This is usually done today by 
using a laser with a second harmonic (wavelength) gen- 
erator as a light source. 

It is clear from the above discussion that the major 
task in evaluating interferograms is to determine the re- 
fractive index at any desired point. Unfortunately, the 
well-known simple and direct method (1), (8) of deduc- 
ing the refractive index from the corresponding interfer- 
ograms is inefficient and inaccurate as the flow under 
consideration becomes complex. Such examples taken in 
the 10 cm x 18 cm Hypervelocity Shock Tube at the 
Institute for Aerospace Studies are shown in Figs. l(a) 
and (b). Interferograms such as these, with their dark and 
bright lines of interference, or fringes, contain a vast 
amount of information about the refractive index varia- 
tions over the entire field of view. In order to extract the 
maximum amount of data in complex flows a digital 
evaluation method was employed. For this technique a 
new approach to the interpretation of interferograms 
was developed. In this approach the spatial coordinates 
(x, y) of the various lines of interference (fringes) on the 
interferograms are put into digital form, thereby making 
a computer analysis possible. 

2 ANALYSIS 

In developing the relationships between orders of inter- 
ference and refractive index, the basics of interferometry 
are reviewed briefly as applied to the Mach-Zehnder 
interferometer whose components are shown in Fig. 2. 
(More details may be found in references (1), (8), and 
(16).) Light from a coherent monochromatic source is 
divided by a first beam splitter $1, into two coherent 
beams, one of which travels through the test section p, 
while the other travels through a compensation chamber 
q. When reunited at the second splitter, $2, the light 
waves will interfere constructively or destructively 
depending on the relative time of travel through each 
arm. The time taken for a plane electromagnetic wave to 
pass through an isotropic medium may be written in 
terms of the 'optical path length' r as 

1 
At = - -  z 

CO 

where Co is the speed of light in vacuo, and 

r = l n d l  

where n is the refractive index, which is a function of the 
medium and of the frequency of the wave, and l is the 
geometrical path over which the wave travels, or the arc 
length. For coherent light, constructive interference 
occurs if the difference in optical path lengths between 
the two arms is an even multiple of half wavelengths of 
the light used, while destructive interference takes place 
if this difference is an odd multiple, that is, 

.$2 .S2 

i np d i p  - "s~ nq dlq 
-s 1 

_ ~2N'(2/2) for maxima (2.1) 
- I(2N' + 1)(2/2) for minima 
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Fig. l(a). Interferogram of non-stationary shock wave structure in argon near the shock-tube wall (distance between reference cross-wires is 
1 cm). Incident shock wave Mach number M~ = 15'9, light source wavelength 2 = 6943 A (shock wave is travelling from right to left) 

Fig. l(b). lnterferogram of a non-stationary double-Mach reflection in nitrogen produced by a sharp compressive wedge of angle 0w = 20 ° at an 
initial Mach number Ms = 6.27, initial pressure and temperature of Po = 15.33 torr, To = 296.0 K and light source wavelength 2 = 3471-5 A 

(shock wave is travelling from right to left) 
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Plane Test section 
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Fig. 2. Basic components of a Mach Zehnder interferometer 

where N' = 0, _+ 1, + 2, ... may be termed the order of 
the interference, 'p' denotes a wave travelling through 
the test section arm and 'q' denotes a wave travelling 
through the compensation arm. For convenience, let the 
optical path lengths in the respective arms be denoted as 

Tq [ S2 
= nq dlq 

"S 1 
• 52 , a S 2 

zp= t npdlp npd /p+  j.b = npd /p+  Ib npd/p 
'St "Sl "a 

Here, the optical path length through the test section has 
been broken at 'a', the entrance position to the test 
section, and 'b', the exit position from the test section, 
into three additive components. The term z*, is then 
defined as: 

• a if2 Z* = np d/p + np d/p - Zq (2.2) 
"S1 

such that z* accounts for all the optical path lengths 
outside the test section. The interference eq. (2.1) may 
then be written as 

[.b 12N'(2/2) for maxima 
• a np d/p + z* = t(2N' + 1)(2/2) for minima 

To write an easier and more general relationship, a 
continuous linear variable, N, is considered such that: 

•b 
} npdl v + z * = N 2  (2.3) 
*a 

where, for N = 0, _+ 1, 4-2 . . . . .  there will be total con- 
structive interference, or maxima; while for N = +_ 1/2, 
_+ 3/2, + 5/2 . . . . .  there will be total destructive interfer- 
ence, or minima. For all other intermediate values of N, 
there will be varying 'grey' interference, or a gradation of 
these two extremes. 

The quantity of interest is generally the refractive 
index np of the medium in the test section, which is then 
related to the density. Thus, if the path taken by the light 

travelling through the test section is known, and all the 
optical path lengths z* outside the test section are ac- 
counted for, then orders of interference N measured 
from an interferogram may be used with eq. (2.3) to 
determine the integrated or cumulative value of np over 
this path. To determine z* for this equation, the interfer- 
ence may be observed for a case where the optical path 
lengths in the test section are known (e.g., 
np = constant). This picture is referred to as the 'no-flow' 
or reference interferogram, and is denoted by the sub- 
script 0. Then 

where 

,b 

z* = No 2 - npo d/p0 
"a 

• b np0 dlpo 
"a 

is known, and No is measured from the no-flow 
interferogram. 

After the event being studied in the test section is 
recorded by the 'flow' interferogram, zJ may be used in 
eq. (2.3) to find np, providing no changes have occurred 
in the optical path lengths outside the test section (i.e., 
z* = z*). However, this assumption is often subject to 
uncertainty, particularly if the time between the record- 
ing of the 'no-flow' and 'flow' interferograms is 
significant. A less stringent dependence on the no-flow 
picture can be invoked by the use of a 'reference point' in 
the flow interferograms as described later• 

Consider the coordinate system shown in Fig. 3 where 
the light propagation is initially in the z-direction• In the 
most general case, the refractive index may vary over the 
entire field, such that n = n(x, y, z). The light path must 
also be such that the travel time be a minimum as given 
by Fermat's principle, 

j" n(x, y, z) dl = 0  

where 6 denotes the first variation of the integral. 
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Interferogram 

× 

Fig. 3. Coordinate system used for interferometric analysis 

However, to keep the analysis from becoming too 
cumbersome, the following assumptions are made for a 
first-order approximation: 

(1) To satisfy Fermat's principle, the refraction of light 
is small such that each beam may be considered to 
travel in a straight line path in the z-direction, per- 
pendicular to the (x, y)-plane. 

(2) The refractive index n varies only across the field of 
view or in the (x, y)-plane, and does not vary along 
the beam direction z. 

(3) The test section windows enclosing the test chamber 
are exactly parallel, such that, for any (x, y)-value, 
the geometrical distance across the test section in the 
z-direction is the same value L. 

The first assumption is satisfactory for many flows 
being examined, but becomes questionable in regions 
where density gradients are high. The second merely 
emphasizes that the interferometer is most convenient 
in analysing two-dimensional flows, and becomes much 
more difficult to use quantitatively if changes occur in 
the beam direction because of the integrated effect. The 
third assumption is usually good, and may be precon- 
trolled to a known accuracy in the equipment. 

Mathematically, the above stipulations translate into 
eq. (2.3) in the following manner: 

(1) dip = dz 
(2{ np = %(x, y), 3" = ~*(x, y) 
(3 b - a -- L for all (x, y) 

Hence, 
,b 

i n, dlp = n(x, y)L 

and 

n(x, y)L + r*(x, y) = N(x, y)2 (2.4) 

Note that the order of interference N may vary across 
the field of view or become a function of (x, y) if the 
optical path lengths outside the test section and the re- 
fractive index inside the test section vary across (x, y). 

Equation (2.4) makes it possible to have a digital 
analysis. 

Some useful comments concerning the adjustment of a 
Mach-Zehnder interferometer will be made. In the 
'ideal' case with perfect optical components and coher- 
ent light, it would be possible to adjust the interfer- 
ometer perfectly such that the optical lengths outside the 
test section do not vary over the (x, y)-plane or field of 
view, such that z* is constant, and not a function of 
(x, y). Then, with constant conditions in the test section, 
there would be a constant interference across the 
(x, y)-field and hence a uniform illumination over the 
entire viewing screen. In other words, the screen would 
be totally bright, dark or gray. This adjustment leads to 
what is termed the 'infinite fringe' method (i.e., the fringes 
are spaced infinitely far apart). 

When changes take place in the test section during a 
flow, any fringes, or lines of extreme interference, which 
are visible will just correspond to lines of constant re- 
fractive index. This follows immediately from eq. (2.4). 

n(x, y)L + z* = N(x, y)2 

Since 3" = constant, the orders of interference, N(x, y), 
which are seen on the screen are directly related to the 
refractive index, n(x, y). Along any fringe, N(x, y)= 
constant, and therefore n(x, y) must be a constant. This 
method is often used for a qualitative examination of a 
flow, particularly in cases where the refractive index can 
be directly related to the density of the medium, as in a 
perfect gas. Any fringes which are visible are isopycnics 
or lines of constant density. However, the fringes are 
usually quite wide and accuracy is therefore impaired. 
Consequently, the infinite-fringe method is poor for 
quantitative measurements that require very good spa- 
tial resolution of density. 

Since only the extreme lines of interference (fringes) 
are easily detected from interferograms, the refractive 
index and hence density must change a sufficient amount 
through the flow to cause changes in optical path lengths 
equivalent to integer changes of wavelength. Otherwise, 
perhaps only one or two fringes will be visible over the 
entire flow from which to determine the results. In other 
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PERFECT ALIGNMENT 
(All path lengths for 
this plane are equal) 

Test ray len, 
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lengthened ~ \ Compensatmg beam rays 

Fig. 4. 'Virtual'  fringe created in the plane of splitter S 2 

words, the spatial resolution is generally poor. This also 
makes it difficult to determine the exact order of interfer- 
ence along the visible fringe, which is necessary in calcu- 
lating the refractive index. Finally, it is almost 
impossible to obtain the perfect optical components to 
provide uniform interference over a very large area. 
Consequently, a fringe or two may appear only because 
of optical imperfections, and this effect may be difficult 
to account for. 

These problems are overcome by using the 'virtual 
fringe' method. In this case, one or more of the compo- 
nents of the interferometer are rotated slightly to produce 
geometrical path differences between the test section and 
compensating beams outside the test section. The basics 
of this technique are shown in Fig. 4, in which the clock- 
wise rotation of splitter $2 by an angle e about the x-axis, 
produces different distances in the light path directions 
to where the interfering beams reunite. For positions 
(y, z) on the splitter above the axis of rotation, the path 
lengths of the test section arm are increased while those 
of the compensation arm are shortened, and below the 
axis, the opposite is true. Looking over the (x, y)-field of 
view, as y increases, the path lengths in the test section 
arm continuously increase linearly while those in the 
compensation arm continuously decrease, independent 
of x. Therefore, with constant conditions in the test 
section, horizontal lines of extreme interference will 
appear, each successive fringe occurring at a value of y 
where the path length difference is again such as to pro- 
duce the next minimum or maximum as shown on actual 
interferograms in Fig. 5. As the angle e increases, the 
path-length changes in the y-direction become more 
severe and the spacing between the fringes becomes 
smaller. Each successive fringe in the y-direction corre- 
sponds to the next higher order of interference, since the 
test section path lengths increase as y increases. Had 
the rotation of $2 been in a counter-clockwise direction, 
the changes as a function of y would be reversed and 

horizontal fringes would again appear, although the 
orders of interference would not decrease in the y- 
direction. Although this very simplified description of 
fringe formation omits the details of focusing (7), it 
should suffice for this analysis. 

With available controlled rotation of the optical com- 
ponents about both the x and y-axes, the spacing and 
orientation of these 'virtual' fringes can be chosen for the 
optimum spatial resolution of the flow being studied. 
The more fringes that are in the region of interest, the 
more locations are known at which there is identifiable 
interference. Consider one such location (x, y) where 
there is, for example, after adjustment of the interfer- 
ometer, a maximum corresponding to a particular 
integer order of interference N'. If the refractive index in 
the test section then changes in the region of (x, y), the 
optical path lengths will change altering the order of 
interference, and there will no longer be a maximum at 
this location. The maximum corresponding to N' will 
now be at some new location where the new optical path 
length inside the test section and the appropriate path 
difference outside again cause the same constructive 
interference. It is the measurement from an interfero- 
gram of fractional changes in fringe position which per- 
mits a sensitive determination of changes in refractive 
index and hence density. 

In an interferogram such as Fig. 1, the lines of con- 
stant extreme interference, or fringes, along which there 
is total constructive or destructive interference, are easily 
identified. For example, each bright line corresponds to 
a maximum, where N(x, y) = N', and N' is some integer 
along the line. Although the exact integer value N', may 
not be known, the fringe can be assigned an arbitrary 
'fringe number' M'. The next bright line of interference 
will generally correspond to an integer value of either 
N' + 1 or N' - 1, depending on the direction of rotation 
in the initial virtual fringe adjustment. In other words, 
between consecutive bright fringes (or between consecu- 
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(a)no-flow interferogram ( 2  = 6 9 4 3  A )  

( b )  f t o w - i n t e f f e r o g r a m  ( 2  = 6 9 4 3  A )  

tive dark fringes), AN' = + 1. Hence, if this next fringe is 
assigned a fringe number, M' + 1, such that AM' = 1, 
there will be a linear relationship established between 
the assigned fringe numbers M', and the actual interfer- 
ence orders N'. In mathematical terms, if 

A N ' =  _+AM', 
then 

N' = +_ M' + k, where k = constant 

If the fringes have been given increasing numbers in 
the same direction as the actual orders of interference 
increase, then the plus sign prevails, while if the number- 
ing were done in the opposite direction, the minus sign 
must be used. If each fringe has been assigned an integer 
fringe number correctly relative to the others, there will 
be the same difference k between the true orders of inter- 
ference and the assigned fringe numbers over the entire 

I N T .  J .  H E A T  & F L U I D  F L O W  V o l  1 N o  2 

interferogram. Thus, the fringe numbers will represent 
the actual orders of interference to within the unknown 
constant k. It should be pointed out at this stage that the 
major problem in analysing complex flows from interfer- 
ograms is, in fact, the correct assignment of fringe num- 
bers over the field to represent the interference correctly. 
Often, fringes become difficult to follow, and extreme 
care must be taken. This aspect will be discussed later. 

The fringe number M' may be generalized to a contin- 
uous linear Variable M, as was done for the interference 
order N, in eq. (2.3). In this case, the centre of a fringe is 
taken as the location where M has the integral value of 
the fringe number. This corresponds to the assumption 
that the position of extreme interference (either total 
constructive or total destructive) is at the centre of the 
observed brightness or darkness. Then 

N(x, y) = + M(x, y) + k 

15~!i!i 
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Substituting into eq. i2.4) yields 
n(x, y)L + z*(x, y) = +_M(x, y)2 + k). (2.6) 

From any interferogram, M(x, y) can be determined 
after numbering each successive fringe correctly. If the 
point (x, y) lies at the centre of a fringe, then M(x, y) will 
be the integer fringe number, whereas if i x, y) lies any- 
where between the centres of two bounding fringes 
M(x, y) will be an interpolated value between the two 
fringe numbers. Either the dark or bright fringes may be 
numbered consecutively, provided that AM = 1 between 
a corresponding type of fringe. For more accuracy, each 
bright fringe could be given an integer value and each 
dark fringe between given a half-integer value, although 
this procedure would double the work of the analysis. 

The digital analysis of any interferogram involves 
determining M(x, y) at any desired location on the 
picture. This procedure may be broken into three basic 
parts as follows. 

2.1 Assignment of Fringe Numbers 
The fringes over the entire interferogram are initially 
numbered relative to each other as correctly as possible. 
When beginning this process on any picture, the number 
assigned to the first fringe is completely arbitrary since 
the actual order of interference is unknown. As men- 
tioned, however, once a particular fringe has been given 
a number, all other fringes must be numbered correctly, 
relative to it in order that a constant difference k (un- 
known) be maintained over the entire interferogram be- 
tween the selected fringe numbers and the actual orders 
of interference. Each interferogram will have its own 
value of k which can be easily handled in the subsequent 
analysis. 

Figure 5(a ) is an example of a no-flow interferogram 
taken with uniform conditions and hence uniform re- 
fractive index in the test section. Consecutive numbering 
of the dark fringes was done in a straightforward 
manner as shown, beginning at the entirely arbitrary 
value of 21. The assignment of fringe numbers for any 
no-flow picture is usually quite routine, unless optical 
imperfections are severe. 

Figure 5(b ) is the subsequent flow interferogram in 
which an ionizing shock wave in argon is travelling 
through the test section from right to left as it diffracts 
around an expansion corner. (It may be compared with 
Fig. l(a) where vertical fringes were used to reveal differ- 
ent flow details.) It is important to point out that the 
number assigned to the first fringe in this picture is again 
completely arbitrary, and need have no relationship 
whatsoever to the no-flow interferogram. To emphasize 
this point, the fringe numbers have been purposely 
chosen different from the no-flow picture even in the 
pre-shock region. It is advantageous, however, to 
number both pictures in the same direction. The neces- 
sary criterion is only that the relative numbering be- 
tween fringes on a particular interferogram be correct. In 
this case, some care must be taken in identifying and 
numbering the fringes near the wall and through the 
shock wave. There are more complex flows for which, in 
certain regions, the correct numbers may be very 
difficult to ascertain, and intuition or experience is 
necessary. However, it should be mentioned that a mis- 
take in numbering of even one fringe will usually give 

physically unrealistic results. Hence, the correct integer 
values may become obvious from the results, and the 
interferogram may be easily re-analysed with the proper 
fringe numbers. 

2.2 Digital Storage of Fringe Coordinates 
The locations of each fringe of interest over the interfero- 
gram are then recorded using a suitable 'digitizer'. A 
digitizer consists basically of a 'tablet' on which a chart 
or picture may be secured, and a travelling cursor which 
may be moved at will over the tablet. The location of the 
cursor at any point on the tablet is displayed contin- 
uously by a digital read-out of the x and y coordinates 
(usually in one hundredths of an inch) with respect to 
the axes and origin of the tablet. These ( x,y)- 
coordinates may be recorded through some interface 
such as digital tape, either continuously at a desired rate 
of points per second, or point by point, by depressing a 
'log' button with the cursor at the desired location. 

The interferogram is placed on the digitizing tablet, 
with its ( x, y)-coordinate system oriented correctly with 
respect to the (x, y)-axes of the tablet. This is generally 
accomplished by using known surfaces or crosswire lo- 
cations on the interferogram as a reference (see Figs. 1, 5, 
and 8(a)) to ensure the correct positioning and provide 
the necessary correspondence between the digitizer co- 
ordinate system and that used on the interferogram. 
After alignment has been established, the centre of each 
fringe is then traced over the interferogram using the 
digital cursor. When recording in the point mode, the 
cursor is moved in steps along the fringe, depressing 
the log button at each step to record the (x, y)-coordi- 
nate. In the continuous mode, the log button is held 
depressed and the recording of coordinates is done auto- 
matically at a preselected number per second as 
the cursor is moved continuously along the fringe. 
The two recording modes are used interchangeably with 
continuous recording in regions where the fringe is 
smooth, and a more careful point by point recording 
where rapid variations occur. In either mode, the 
recorded points must be sufficiently close for the sub- 
sequent analysis such that the fringe location between 
any two points can be accurately given by a joining 
straight line. Consequently, when digitizing has been 
completed, a sufficient number of points will have been 
digitized (recorded) to accurately define the location of 
each fringe anywhere over the interferogram. 

An example of the results of this procedure is shown in 
Fig. 6. In this case, the dark fringes, digitized from the 
interferogram in Fig. 5(b) have been replotted using an 
IBM 1627 Calcomp Digital Plotter connected with an 
IBM 1130 computing system. Each fringe, of course is 
actually described by a number of recorded, discrete 
points as shown at the top of the figure for a particular 
fringe number. In the full plot, the plotter pen has merely 
been left down as it travelled from point to point along 
each fringe. As can be seen, it is an accurate representa- 
tion of the interferogram, and the data are now in digital 
form suitable for analysis. 

2.3 Determination of M(x, y) 
The value of M at any desired location (x, y) is necessary 
if eq. (2.6) is to be used to find the refractive index at that 
point. Since many points across the interferogram have 
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been recorded by the digitizing procedure at which 
integer values of M (fringe numbers) are known, a two- 
dimensional interpolation scheme would seem appro- 
priate, if it were not somewhat lengthy, in finding M at 
other positions. However, if the position of each fringe 
can be determined accurately, even between the discrete 
points by linear interpolation (straight-line segments) as 
specified above, the problem remains only in finding 
Mix, y) at off-fringe locations. Restating this, since lines 
can be defined from the digitizing procedure along 
which M is known, all that remains is to determine M at 
positions not on the lines. This is accomplished in the 
following manner. 

The interferogram is divided into a grid of constant 
'argument' lines, as closely spaced as desired and gen- 
erally perpendicular to the average direction of the 
no-flow fringes. The most convenient choice of argument 
lines (although not a necessity) for data handling are 
lines along which one coordinate remains constant. For 
example, with basically horizontal fringes as in Fig. 6, a 
grid of lines of constant x is generated as shown in Fig. 
7(a). For vertical fringes, a grid of lines of constant y 
would be most suitable. From the digitized data, the 
intersection points of any fringes with an argument line 
can be found. Thus, for each argument line, a plot may 
be made of fringe number versus the coordinate of inter- 
section. The quantity M may then be found at any co- 
ordinate along the argument line by a one-dimensional 
interpolation. As a result, to find M at any location 
(x, y), the correct argument line passing through the 

point is chosen, along which discrete values of M are 
known, and a one-dimensional interpolation is done 
along the line to find M at this point. 

The procedure is demonstrated in Figs. 7(a) and (b) 
where the grid consists of lines xi = constant. For each 
argument line a plot may be made of the variation of 
fringe number M with y as shown in Fig. 7(b). An inter- 
polation of chosen order may be done to determine M at 
any specific value of y. This process is handled easily by 
a computer and may be performed quickly and often. 

With a method available for determining Mix, y) as 
desired from any interferogram, the use of eq. (2.6) will 
now be examined in more detail. After the interferometer 
has been suitably aligned with the desired number and 
spacing of virtual fringes, a no-flow interferogram is 
taken where the refractive index in the test section has a 
known and uniform value, 

n(x, y) = no = constant 
Then 

noL + z*(x, y) = +_Mo(x, y)2 + ko2 (2.7) 

where again, the subscript 0 denotes the no-flow picture. 
Although no is known and Mo(x, y) can be determined 
from the interferogram, k0, the constant difference be- 
tween the fringe numbering and the real orders of inter- 
ference is not known. 

For the subsequent interferograrn taken of the flow 
under study, eq. (2.6) will be simply restated: 

n(x, y)L + z*(x, y) = +_ M(x, y)2 + k2 
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It is advantageous that the fringe numbering in the flow 
picture be in the same direction as in the no-flow picture, 
such that the same siffn holds in both expressions. 
Subtracting, 

[n(x, y) - no]L + [z*(x, y) - x*(x, y)] 

= + [M(x, y) - Mo(x, y)]2 + (k - ko)2 (2.8) 

If no changes have taken place outside the test section 
during the time when the two interferograrns are taken, 
then T*(x, y ) =  Xo*(X, y). Moreover, since no is known, 
and M(x, y) and Mo(x, y) may be measured from the 

respective interferograms, it is then possible to deter- 
mine the refractive index in the flow n(x, y), to within the 
constant, (k - ko), that is, 

[n(x, y ) -  no]L = + [ m ( x ,  y) - mo(x, y)]2 + (k - ko)2 

(2.9) 

If the difference between the chosen fringe numbering 
and the actual orders of interference happens to be the 
same in both pictures, then k = ko, and the calculations 
may be made directly. If not, it is known that (k - ko) 
must be an integer, and it is not difficult in most cases to 
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find its value from the results since an incorrect choice 
usually gives unrealistic answers. 

However, it is found from practical experience that the 
assumption of no change in optical path lengths outside 
the test section between the no-flow and flow interfero- 
grams is often incorrect. This usually arises from the 
inability to control the outside conditions absolutely. 
Small temperature changes (and hence density) and 
minute physical movements of the optical components, 
caused either thermally or otherwise, are difficult to 
avoid. Because of this, a stronger method is often used 
which requires that a reference point exist somewhere on 
the flow interferogram at which the refractive index is 
known. The use of this reference point can at least 
accommodate uniform changes in ~*(x, y) between 
no-flow and flow pictures and eliminates the necessity of 
choosing the correct value for (k - ko). 

Denoting the coordinates of this reference point as 
(x,, y,), eq. (2.8) must be satisfied at this particular loca- 
tion since it is valid for any point on the interferograms. 

[n(x,, Yr) - no]L + [z*(x, y,) - z*(x,, y,)] 

= +_ [M(x,,  y,) - Mo(x ,, y,)]2 + (k - ko)2 

Subtracting this expression from the general eq. (2.8) for 
all points 

[n(x, y) - n(x,, y,)]L + [z*(x, y) - z*(x, y)] 

- [z*(x , ,  y, )  - z*(x, ,  Yr)] 

= _ {[M(x, y) - Mo(X, y)] - [M(x,, y,) 

- Mo(X, ,  y,)]}2 (2.10) 

If the changes which take place in z*(x, y) during the 
time the no-flow and flow pictures are taken are uniform 
for all (x, y), then 

z*(x, y) - z*(x, y ) =  T*(x,, y , ) -  z*(x,, y,) 

(It should be noted here that it is almost impossible to 
account for changes.which might take place outside the 
test section which vary across the field of view.) Equa- 
tion (2.10) then reduces to: 

L 
[n(x, y) - n(x,, y~)] 

= [M(x ,  y)  - Mo(x ,  y)] - [M (x , ,  y , )  - Mo(x , ,  y,)] 

(2.11) 

Therefore, using some reference point (x,, Yr): 

(a) n(x,, y,) must be known, but 
(b) k - ko need not be known, 
(c) no need not be known. 

The term M(x, ,  Y , ) -  Mo(x, ,  y,) is a particular value 
determined from the interferograms. It not only 
accounts for the refractive index change in the test sec- 
tion at the particular point (x,, y,), but also for: 

(a) the fringe numbering difference between the no-flow 
and flow pictures, and 

(b) any uniform changes occurring outside the test sec- 
tion during the time the two pictures are taken. 

This is easily seen if the reference point can be chosen 
in a region where conditions in the test section have not 
changed between the no-flow and flow pictures, as in the 
region ahead of the shock wave in Fig. 5(b). Then, any 
non-zero value of M(xr, y,) - Mo(x, ,  y,) must be due 
either to the choice of fringe numbering made in each 
picture, or to changes outside the test section. 

The right-hand side of eq. (2.11) is termed the fringe 
shift S which compares the observed change in interfer- 
ence at the point (x, y) between the no-flow and flow 
interferograms to that at a reference point (x,, y,). 

sO,, y) - _+ {[M0,, y) - moO,, y)] 
- [ M ( x , ,  Yr) - m o ( x , ,  y , ) ] }  ( 2 . 12 )  

As discussed previously, the choice of sign depends on 
the initial virtual fringe adjustment of the intefferometer. 
If the fringe numbers have been arbitrarily chosen to 
increase in the same direction as. the actual orders of 
interference increase, the plus sign holds, whereas, if the 
numbering were done in the opposite direction, the 
minus sign must be used. If the incorrect choice of sign is 
made, all fringe shift values will be opposite in sign from 
reality, and the calculated refractive index will then vary 
from the reference value in the reverse manner. Often, 
negative values of n(x, y) result, easily identifying the 
mistake. In almost all cases, there is some region in the 
picture where it is known that the density and hence 
refractive index either increases or decreases, such as 
through a shock wave, compression wave, expansion 
wave, contact surface, slipstream, and boundary layer. 
Consequently, the correct sign, which holds over the 
entire interferogram, can be easily confirmed or cor- 
rected from a brief look at results, and presents no prob- 
lem in the analysis. 

In summary, the usual fringe shift equation for inter- 
ferometry may be written from eq. (2.12) as: 

S(x, y) = 2 [n(x, y) - n(x,, y,)] (2.13) 

where 

s(x, y )=  _+{Ira(x, y ) -  m0( , y)] 
- y , )  - y , ) ] }  

Using a digital analysis technique, Mo and M may be 
determined from the respective no-flow and flow inter- 
ferograms at any location (x, y), (including (x,, y,) there- 
by allowing a calculation of S. Therefore, knowing L, 2, 
and n(x,, yr) enables a final determination of refractive 
index, n, at any location (x, y). 

3 PERFORMANCE AND RESULTS 

The method of evaluating interferograms discussed in 
the foregoing was applied to some complex flow-fields 
such as ionizing shock structures (9), (10) ionizing boun- 
dary layers (11), (12) and non-stationary oblique shock- 
wave reflections (13), (14). Very satisfactory to good 
agreement was obtained by Glass et al. (9), (10) and Liu 
et al. (11), (12) who compared the results concerning the 
total and electron number densities with their analytical 
predictions that they obtained using sophisticated 
numerical methods. Very good agreement was obtained 
in references (13) and (14) and it is believed that order 
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and insight has been brought to this old and complex 
problem. 

As illustrations of the effectiveness of the present 
method of evaluating interferograms, some typical re- 
suits from the above investigations are discussed. Figure 
8(a) shows a representative shock wave in krypton. The 
interferogram was taken in our 10 cm x 18 cm Hyper- 
velocity Shock Tube at 6943 A using a 23-cm diameter 
field of view Mach-Zehnder interferometer equipped 
with a dual-frequency giant-pulse ruby laser. (The inter- 
ferogram at 3471-5/l/is not shown as it is not as sensitive 
to electron number density and visually does not pro- 
vide any new details.) The shock wave is moving from 
right to left. The abrupt change in the fringes at the 
translational shock front S is readily seen. The slow pro- 
duction of electrons through atom-atom collisions is in- 
dicated by the gradual decrease in the fringe shift. A 
sudden fringe shift occurs as an avalanche of electrons is 
produced by electron-atom collisions at the electron 
cascade front E, where the maximum electron number 
density is achieved. Subsequent damped oscillations can 
be seen in the quasi-equilibrium region after the electron 
cascade front. The fringes rise as the electron number 
density decreases due to radiative recombination. 

The foregoing method of evaluating interferograms 
was used to obtain the actual variations of the plasma 
density (p), electron number density (he), and degree of 
ionization (g) across the shock wave shown in Fig. 8(a). 
These experimental profiles as well as the analytical 
predictions are shown in Figs. 8(b) and (c). It is seen that 
the agreement between experiment and analysis is very 
good. Further details can be found in references (9), (10), 
(11), and (12). The interaction of a nonstationary planar 
shock wave (I) with a compression corner of 10 ° is 
shown in Fig. 9(a). (A detailed sketch is given in Fig. 
9(c).) This particular reflection is known as double- 
Mach reflection. Two three-shock confluences (triple 
points T and TI) consisting of three shock waves and 
one slipstream each are clearly seen. 

The density field in the form of constant density con- 
tours (isopycnics) associated with this reflection is 
shown in Fig. 9(b). The isopycnics numbers (m) and the 
corresponding density values (P/Po) a r e  tabulated. The 
inaccuracy in P/Po for this case is Ap/po = 0"125 and it is 
fixed for a given interferogram. The density distribution 
along the wedge corner associated with this double- 
Mach reflection is shown in Fig. 9(c). Here also, the 
inaccuracy in measuring p is 0" 125p0. A detailed discus- 
sion of the maximum absolute possible errors associated 
with the total densities and electron number densities as 
measured from the interferograms using the present 
method of evaluation can be found in (15). 

The average time for digitizing the four interferograms 
(two 'flow' and two 'no-flow' pictures) for a given experi- 
ment is about two hours. Subsequently, about four to six 
hours are needed for corrections and final storing on a 
magnetic computer disc. Once the above is done the 
total density, electron-number density, and degree of 
ionization profiles along straight lines at any desired 
directions (like those shown in Figs. 8(b), 8(c), and 9(c)) 
can be plotted within minutes. Note that the same re- 
suits as those shown in Figs. 8(b), 8(c), 9(b), and 9(c) 
from the corresponding interferograms (Figs. 8(a) and 
9(a), respectively) would require at least a couple of days 

using conventional methods of evaluating interfero- 
grams. The accuracy in this case also would be much 
poorer. 

4 D I S C U S S I O N S  A N D  C O N C L U S I O N S  

A new computerized method for evaluating complex 
flow interferograms was presented. The present method 
has the following advantages over previous techniques: 

(1) It can easily handle complex-flow fields. 
(2) It can account for the changes in the optical path 

length that occur outside the test section during the 
time interval taken to record the 'no-flow' and 'flow' 
interferograms. 

(3) Once the interferograms are digitized, corrected, and 
stored on a computer disc, the total density, 

S E 

Fig. 8(a). Shock structure in ionizing krypton,  over entire shock tube 
height of 18 cm. S-- t rans la t ional  shock front, E- -equ i l ib r ium ioniza- 
tion (electron cascade front). SE-- ioniza t ion  relaxation distance: 
P0 = 5.15 torr,  T O = 296.2 K, Po = 2.34 x 10 -5 g/cm 3, Ms = 15.05. 
Equil ibrium condit ions (at point  E): p E =  1685 torr,  T E = 11641 K, 
p~ = 1.71 x 10 -4  g/crn 3, nc = 1.68 x 1017/cm, ZE = 13.6percent. (One 
vertical and two horizontal  reference cross-wires are also shown.)  ' 
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electron-number density, and degree of ionization 
profiles can be obtained along any predetermined 
line within several minutes. 

One outstanding problem, the solution of which 
would reduce the evaluation even further, is to develop a 
totally automated computerized method of evaluating 

interferograms rather than the semi-computerized (hand 
digitized) method presented here. Undoubtedly, such a 
solution would evolve if more experimenters made more 
use of interferometry for investigating complex flows. 
However, the correct assignment of fringe number over 
the field of view, to represent correctly the interference 
order, would probably still be done manually. 
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Fig. 9(a), Interferogram of a non-stationary double-Mach reflection in nitrogen Ms = 3.76, 0w = 40 °, Po = 15.34 torr, To = 297-4 K 
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Fig. 9(b). Actual flow isopycnics corresponding to the non-stationary oblique shock-wave diffraction shown in (a). I--incident shock wave, R 
and Rl--first and second reflected shock waves, S and S,--first and second slipstreams, T and Tj--first  and second triple points, M and M~--first 
and second Mach stems. Calculated density ratios in vibrational equilibrium: point 1--4"586, b--7-908, c--5.669 and 4-383, 7-286, 5-086, respectively 

for a perfect diatomic gas 
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